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A B S T R A C T

Evaporation of sessile droplets containing non-volatile solutes dispersed in a volatile solvent leaves behind
ring-like solid stains. As the volatile species evaporates, pinning of the contact line gives rise to capillary
flows that transport non-volatile solutes to the contact line. This phenomenon, called the coffee-ring effect,
compromises the overall performance of industrially relevant manufacturing processes involving evapora-
tion such as printing, biochemical analysis, manufacturing of nano-structured materials through colloidal
and macromolecular patterning. Various approaches have been developed to suppress this phenomenon,
which is otherwise difficult to avoid. The coffee-ring effect has also been leveraged to prepare new materials
through convection induced assembly. This review underlines not only the strategies developed to suppress
the coffee-ring effect but also sheds light on approaches to arrive at novel processes and materials. Working
principles and applicability of these strategies are discussed together with a critical comparison.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

A phenomenon omnipresent in nature, the evaporation of ses-
sile droplets containing non-volatile solutes received a great deal of
attention due to the richness of fundamental phenomenon it entails
and the number of applied aspects connected to it [1–3].

One ubiquitous phenomenon occurring in the evaporation of ses-
sile droplets containing non-volatile solutes is the contact line pin-
ning and the formation of ring-like residues, called the coffee-stains
or coffee-rings [1–5]. Understanding and controlling the process of
solute deposition in the presence of coffee-ring effect (CRE) is impor-
tant in manufacturing processes involving evaporation on surfaces
including printing [6–9] and fabrication of ordered structures [24],
functional nanomaterials [25,26] and colloidal crystals [27,28]. CRE
also hampers the performance of commercial applications including
fluorescent microarrays [10,11], matrix assisted laser desorption ion-
ization (MALDI) spectrometry [12–15], and surface enhanced Raman
spectroscopy (SERS) [16,17]. CRE has also implications in plasmon-
ics [18], diagnostics [19–21], solute separation [22] and electronics
applications [23].

The solute deposition at the contact line is a complex pro-
cess [1,2,4,29-31]. Contact line pinning and contact angle hysteresis
(CAH) play a critical role in formation of coffee-ring effect [59]. The
evaporation rate and hence the capillary flow diverges at the contact
line due to the relatively larger proportion of the liquid-air inter-
face there [5,30]. For evaporating droplets of colloidal suspension,
the particle deposition at the contact line can be ordered (square
and hexagonal packings) or disordered depending on the magnitude
of capillary flow [32]. Marin et al. observed that the capillary flow
diverges towards the end of the evaporation process and hence a
transition from ordered to disordered packing is observed [32]. The
solute deposition process is also influenced by a number of other
aspects such as the presence of electric double layer at the liquid-
substrate interface [33], the thermal Marangoni flows [34], the ratio
of the thermal conductivities of the substrate and liquid [35], sur-
face charge of the substrate and particle surfaces [36], and even the
shape of the particles [37,38]. Deposition of large particles are also
influenced by the inward capillary push due to the decreasing height
of the liquid wedge near the contact line [39]. Similar forces due to
geometrical constraints in a different configuration formed unique
packings of colloidal particles at the interface of liquid emulsion
droplets in the presence of slow evaporation [40,41].

Several theoretical models were developed to predict the mor-
phology of the deposit, the resulting film thickness and the solvent
flux. The first reported models by Parisse et al. could estimate the
film thickness upon complete evaporation [29,30]. Later, the works
of Deegan et al. [4,31] and others [1,2,5,42-44] gave more complete
mechanistic understanding of CRE. Theoretical models incorporat-
ing the factors such as the receding of the contact line [45,46],
center-enhanced flux [47], presence of polymers [48–51] and
surfactants [52] have shown to alter the morphology of the residues.
Frastia et al. included the stick-slip motion of the receding con-
tact line and observed the formation of multi-ring deposition of
the solutes [53,54]. The multiphase model of Kaplan et al. showed
that relative strength of the capillary flow and the evaporative flux
influences the deposition pattern [55] as also demonstrated by Shen
et al. [56].

1.1. Outline of this review

The physical insights obtained through theoretical and experi-
mental investigations of CRE have not only been utilized to develop
CRE-free manufacturing processes but also they inspired novel
strategies exploiting CRE as a method for convective assembly.
We review this multi-faceted phenomenon in two sections: (i) the

strategies to suppress CRE and (ii) the approaches leveraging CRE
to arrive at novel processes and materials. Within each section we
classify the methods based on their working principle.

2. Suppression of CRE

CRE can be suppressed through one of the three physical strate-
gies (i) preventing the pinning of the contact line; (ii) disturbing the
capillary flow towards the contact line and (iii) preventing the parti-
cles being transported to the droplet edge by the capillary flows. We
will first briefly introduce these three strategies then discuss them in
detail in different sections.

The contact line pinning of a sessile droplet is characterized by
the CAH [57–59]. The pinning force per unit length and the contact
angle hysteresis are related as fp =c (cosha −cos hr) where c is the
surface tension and ha and hr are the advancing and receding contact
angles, respectively. Minimizing the hysteresis will facilitate smooth
receding of the contact line upon evaporation hence preventing the
formation of ring-like deposits as also suggested by the theoretical
models [45,46,53]. Experimentally, it can be achieved by evaporat-
ing droplets on low CAH superhydrophobic surfaces [64-68,70] or
through CAH suppression via electrowetting [77].

When the evaporation-driven outward capillary flow is disturbed
the solute transport to the contact line can be minimized or even
totally avoided. This can be achieved by inducing additional flow
fields inside the droplet, for example, by surface tension gradients
(Marangoni flows) [5,12], electrowetting [13,77], electroosmosis [80]
and acoustic streaming [84].

The transport of solute particles to the contact line can be pre-
vented by utilizing the particle-particle interactions and/or the inter-
action of particles with the solid-liquid (SL) interface and liquid-gas
(LG) interface [60,118]. In this strategy, solute particles can aggre-
gate at the SL interface or form arrested structures at the LG interface
altering the capillary flows. Other methods to prevent the transport
of particles are acoustics and phase transition of the liquid during
evaporation [8,9].

2.1. Preventing the contact line pinning using hydrophobic surfaces

Increasing the hydrophobicity of surfaces is often accompanied
by decreasing CAH [59]. Lower CAH in essence means reduced
contact line pinning which leads to suppression of CRE. It can
be achieved by patterning of controllable surface wettability as
reviewed previously by Tial et al. [62]. These methods include chem-
ical modification [61,62] and physical modification [62-68,70].

The hydrophobization by chemical modification involves cover-
ing the surface with hydrophobic molecules such as self-assembled
monolayers [61,62]. The physical modification involves patterning
the surface to create microscopic roughness on it, for example,
an array of pillars, which in turn decreases the effective contact
area of the solid-liquid interface. When hydrophobized, such rough
surfaces act as superhydrophobic surfaces. Two different types of
droplet configurations are possible on such surfaces: Cassie or Wen-
zel states (Fig. 1a). In the Cassie state, a droplet sits on the pillars
and its evaporation can produce ball-like spherical [67] or disc-
like [68] deposit (Fig. 1b, c). In the Wenzel state, the liquid fills in
between the pillars. Cassie to Wenzel transition of the droplet was
studied previously [68,69]. It depends upon the balance between
the Laplace pressure PL = 2c/R and the capillary pressure Pc =
−4ccoshY[0/(w(1 − 0))], where R is the radius of the droplet, hY is
the equilibrium contact angle, 0 is the surface solid fraction and w
is the pillar width. The capillary pressure decreases with increas-
ing pillar pitch. As the droplet evaporates, the Laplace pressure
increases due to the decreasing droplet radius. Cassie to Wenzel tran-
sition occurs when the droplet becomes small enough such that the
Laplace pressure exceeds the capillary pressure. It means that there
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Fig. 1. The CRE on superhydrophobic surfaces. (a) A droplet can stay on top of the micropillars (Cassie state) or fill in between the pillars (Wenzel state). (b) Evaporation of a
colloidal droplet on superhydrophobic surface produced a spherical particle conglomerate. Adapted with permission from: [67] Copyright ©2012, National Academy of Sciences,
USA. (c) SEM images of representative particulate deposits on the five different surfaces show the influence of surface morphology on deposit pattern. Surfaces (i) and (ii) show
Cassie deposits whereas (iii) to (v) show Wenzel deposits. Adapted with permission from: [68] Copyright ©2014, American Physical Society. (d) Drying in the Wenzel configuration
also can result uniform deposition. Adapted with permission from: [70] Copyright ©2012, Royal Society of Chemistry.

exists a critical pitch above which Wenzel deposits are formed [68].
Wenzel state is often associated with pinning. However, when nan-
otextures are applied on superhydrophobic surfaces, droplets in the
Wenzel state can also have slipping contact lines [71]. Gelation
of the particles at the edge of a Wenzel droplet can result in an
inward circulatory flow of liquid suppressing CRE [70] (Fig. 1d). It
is also demonstrated that on surfaces with small CAH the solutes
with low surface activity (say copper sulfate) formed spot-like
residues [74].

The suppression of CRE using (super)-hydrophobic surfaces is
simple as they do not require any external involvement during the
drying of droplets. However, the preparation of superhydrophobic
surfaces is expensive. Another issue is the strong pinning of the con-
tact line when surface active/adsorbing molecules are present in the
droplet as in the case with biological fluids such as blood and urine.
Biological sample have variety of molecules that adsorb readily on
the surfaces through hydrophobic or non-specific interactions. Thus,
suppression of CRE in biological fluids using of hydrophobic surfaces
is still an open challenge. In such scenarios, strong convective flows
can be introduced in the droplet to minimize the adsorption induced
CAH as a potential solution.

2.2. Electrowetting

On hydrophobic and partially hydrophobic surfaces, pinning can
occur when the CAH or solute concentration is high. If CAH is high,
during when the contact angle decreases to the receding angle, typi-
cally a few seconds depending upon the rate of evaporation, solutes
can accumulate at the contact line. Such accumulation produces ring-
like deposits only if the duration of pinning is above a critical value
for a given substrate-solute system [72]. On the other hand, short
pinning time even with high initial solute concentration can mini-
mize CRE producing smaller inner rings [73]. The pinning induced
by deposition becomes more prominent when the solute is nanopar-
ticles as they can flow into the microscopic regions of the droplet
edge.

In the presence of solute particles in the droplet, electrowetting
(EW) can ensure efficient slippage of the contact line on (partially)-
hydrophobic surfaces [75,76]. In EW configuration, a droplet is
deposited on a dielectric layer of thickness d and dielectric constant
4d covering an electrode (Fig. 2). When a voltage U is applied between
the droplet and the electrode an electric force per unit length fel =
4d40U2/2d (40: vacuum permittivity) pulls the contact line outward,
overcoming the pinning forces. In AC (alternate current) electrowet-
ting (ACEW), the contact line moves periodically, thereby de-pinning
it continuously from the pinning sites. It allows the contact line to
recede freely as the droplet evaporates [76]. Additionally, ACEW gen-
erates circulating flow inside the droplet, which mixes the solutes
continuously. Flow is generated at higher frequencies of the applied
voltage, typically a few kHz. The slipping contact line and the inter-
nal flow produce concentrated spot-like residues [13,14,77] (Fig. 2).
Such concentrated residue of analytes increased the signal strength
in MALDI spectrometry [13,14].

Theoretical studies have demonstrated that drying a droplet in an
electric field in other configurations also suppresses CRE [78,79]. For
example, the application of a Gaussian potential near the edge of a
droplet deforms its interface due to the Maxwell stress. The deforma-
tion is in such a way that it drives the bulk of the droplet towards its
center eventually resulting in the suppression of CRE [78]. Zhang et
al. studied the effect of electric field on evaporating nanodroplets of
salt-water using molecular dynamics simulation [79]. They applied
DC (direct current) electric fields along uni-axis, and AC electric
fields axisymmetric, both parallel to the substrate. The application of
electric fields parallel to the substrate is equivalent to the EW config-
uration with interdigitated electrodes [77]. With DC fields above 0.03
V/Å, the salt crystals formed a ribbon-like pattern along the direction
of the field. Low frequency AC electric fields stronger than approx-
imately 0.006 V/Å gave spot-like residues. At higher frequencies i.e.
typically a few tens of GHz, ring-like patterns reappeared because the
time scale of the periodically varying electrophoretic force became
comparable to the local equilibration time scale, thus nullifying the
effect of the electric field.
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Molecular adsorption on hydrophobic surfaces can decrease the
efficiency ACEW induced CRE suppression. The gradual accumulation
of adsorbing molecules at the contact line prevents its oscillations.
However, the internal flow inside the droplet minimizes adsorption.
The working principle in ACEW is purely hydrodynamic implying
that the suppression is achieved by the contact line oscillations and
the internal flow [13,14,77]. No electric field exist inside the droplet
if the liquid is conducting. It should be noted that EW under DC fields
cannot generate contact line oscillations. The inconvenience with the
configuration having a wire inserted into the droplet can be avoided
by using EW substrates with interdigitated electrodes [77]. In short,
EW offers a feasible solution to suppress CRE even in the presence
of high concentrations of solutes in the droplet when the substrate
surface is (partially)-hydrophobic.

2.3. Electroosmotic flow

The capillary flow acting on the electric double layer at the solid-
liquid interface generates streaming potentials and influences the
solute transport [33]. The existence of the electric double layer can
be exploited to generate electroosmotic flow (EOF) by externally
applied electric fields inside the droplet [80]. This is achieved by plac-
ing a circular electrode around the rim of the droplet and a point
electrode at the center (Fig. 3). The electric field applied between the
point electrode and the circular electrode generates a radial EOF near
the substrate. EOF velocity is given by veof = −404rfE/g where, E is
the electric field, f is the zeta potential of the substrate and 4r is the
dielectric constant of the liquid. When the radially inward EOF over-
comes the outward capillary flow, CRE does not occur. This method
requires precise deposition of the droplet on the electrodes and may
also involve minor heating effects. However, it is non-invasive as it
avoids the addition of surface active materials.

2.4. Vibrations and acoustics

Substrate vibrations have shown to produce uniform layers in
the convective depositions of colloidal monolayers [81] and in spray
coating for organic solar-cell applications [82]. The acceleration of
the surface deforms the air-liquid interface and the resulting pres-
sure variations induce local flow of the liquid. This flow near the
substrate prevents the clustering of the particles at the contact line
and results in uniform depositions.

Recently, surface acoustic waves (SAW) [83] were used for alter-
ing the evaporative patterns [84–86]. Mampallil et al. demonstrated
that CRE can be suppressed when the droplet is dried on a surface
where SAW propagates (see Fig. 4a). The SAW creates standing pres-
sure waves in the droplet. The acoustic force pushes the particles
towards the nodes of the standing waves. This force (say, along x
direction) is given as Fac = 4pa3kEacVsin(2kx), where a is the diam-
eter of the particle, k is the wave number, Eac is the time-averaged
acoustic energy density, and V is the acoustic contrast factor that
depends on the density and compressibility of the particle and the
liquid. When the acoustic force is higher than the drag force due to
the capillary flow, the particles are trapped in the pressure nodes
in the bulk of the droplet (Fig. 4b). Trapping of particles in pres-
sure nodes prevents the transport of the particles to the contact line
(Fig. 4c, d). Mhatre et al. studied the particle deposition on SAW prop-
agating surfaces both theoretically and experimentally [85]. They
derived governing conditions for the formation of stripes to films and
verified the conditions experimentally.

The method based on acoustics has the advantage that it is inde-
pendent of the particle shape, density, nature of the liquid and the
wettability of the surface. The method is also suitable with biolog-
ical samples [84]. The substrate placed on the acoustic transducer
should be of an elastic material such as glass, silicon or metals. The
surface requires no physio-chemical modifications. This method is
not effective when the particle size is small such that the acoustic
force becomes smaller than the drag force. For particles of diame-
ter typically above 100 nm, this issue can be overcome by increasing
the frequency and/or the acoustic energy, without causing excessive
heating of the droplet. When acoustic trapping is not effective, acous-
tic streaming flow can be used, which produces concentrated residue
even with nanoparticles [86].

2.5. Marangoni flow

Due to the endothermic nature of evaporation, the liquid-gas
interface of the droplet is cooler than the bulk liquid. Any small
perturbation in the surface temperature creates surface tension gra-
dients resulting in the Marangoni flow [87–89].

Influence of Marangoni flow on solute deposition has been stud-
ied theoretically and experimentally [35,52,87]. For an evaporating
sessile droplet the direction of Marangoni flow depends on the rela-
tive thermal conductivities of the liquid and the substrate. When the
ratio of substrate and liquid thermal conductivities (kR) is below 1.45,

Fig. 2. Electrowetting and CRE. (a) Undisturbed evaporation and (b) evaporation under ACEW (150 V and 6 Hz). (c, d) Cartoon of the surface profile after evaporation in the both
cases. (e) The residues with PS particles and DNA (refs. [13,77]).
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Fig. 3. EOF based suppression of CRE. Using surface patterned electrodes electric field is applied in the droplet. The EOF near the surface can oppose the capillary flow (dashed
arrow). The schematic of the cross-section and top view of the electrodes are also shown.
Source: Copyright ©2006, American Chemical Society.

the edge of the droplet is the coldest and the direction of the thermal
Marangoni flow along the substrate is inward towards the center of
the droplet [35] (Fig. 5a).

When the direction of the Marangoni flow is radially inward
and its characteristic velocity vMa ∼ ∂c

∂T
DT
g is bigger than the out-

ward capillary flow, particles are concentrated at the center of the
droplet. In the case of water droplets, the thermal Marangoni flow

is weak [1,2,90]. However, it is considerable in volatile non-aqueous
based liquids [91]. The thermal Marangoni flow can be enhanced by
elevating the temperature of the substrate [92,93] resulting in an
increased solute concentration near the center of the droplet [92].
An increased temperature also increases the outwards capillary flow
producing a ring as well. The result is a spot-inside-ring or an
eye-like pattern. The effect of buoyant motion of the liquid from

Fig. 4. Acoustics and CRE. (a) A droplet is placed on a ‘superstrate’, coupled to a piezoelectric device (IDT) that generates surface acoustic waves (SAW). (b) The particles do not
reach to the contact line as they are trapped in the nodes of the standing capillary waves and pressure waves. Heavier silica particles get trapped in the pressure nodes near the
superstrate surface. (c) Evaporation of a droplet with dispersed PS particles of diameter 1 lm under SAW (frequency 10 MHz; power 30 dBm) produced spot-like residue. (d) The
range of frequencies and particle sizes at which a successful suppression is obtained. The filled circles indicate a successful suppression. At higher frequencies larger particles
obstructed the receding contact line and produced coffee-rings (Ref. [84]).
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the hot substrate to relatively cooler liquid-air interface is often
negligible [92].

The droplet surface can be locally heated using a laser beam
to generate radially inward flow [94]. In this study, an infra-red
laser of wavelength 2.9 l m (as water has strong absorption at
this range) was irradiated at the liquid-air interface of the droplet
(Fig. 5b). When the laser exposure time was at least 60% of the
total evaporation time of the droplet CRE was fully suppressed. The
residue morphology can be varied from uniform disc to spot-like
deposition either by increasing the exposure time or decreasing the
ratio between the laser spot size and the droplet diameter (Fig. 5c,
d) [94].

Without rising the temperature of the system strong Marangoni
flow can be generated mixing solvents [6,23,95,96,99] or adding sur-
factants [1,2,18,90,100,101] in the liquid. Surfactants decrease the
surface tension of the liquid (say, water). As the liquid evaporates
the concentration of the surfactants increases locally, generating
strong gradients in the surface tension. The resulting Marangoni
flow can overcome the capillary flow. Sodium dodecyl sulfate is an
example of a commonly used surfactant. In bacterial systems, bio-
logically produced surfactants can also induce Marangoni flow and
suppress CRE [102]. Marin et al. showed that the nature of surfac-
tant (ionic or non-ionic) is important in determining the residue
shape. Their particle tracking measurements showed that the con-
vective flow can reverse direction depending upon the nature of
the surfactant by making the liquid-air interface either rigid or
elastic [103].

Michen et al. demonstrated that addition of bovine serum albu-
min (BSA) to suspensions of nanoparticles avoided drying artefacts in
the sample preparation for transmission electron microscopy [104].
In this process, BSA not only stabilized the individual particles
against aggregation but also induced Marangoni flow and improved
wetting on the solid surface. The optimum concentration of BSA was
estimated depending upon the volume fraction of particle in the
suspension and also the particle properties. Similarly, addition of
low amount of ethylene glycol (10–30 vol%) in colloidal suspensions
produced uniform deposits [96,97].

Marangoni flow is very strong in the drops of binary mixtures,
for example, water and ethanol mixture. Here, one liquid being more
volatile than the other, different flow regimes exist during the evap-
oration. As shown by Zhong et al., water-ethanol binary mixture
drop suspended with alumina nanoparticles demonstrates three dis-
tinct regimes: the initial strong flow that takes the particle to the
liquid-air interface; Marangoni flow; and evaporation of the water
content [98].

Certain applications, for example, biochemical analyses do not
favor CRE suppression methodologies using additives such as sur-
factants [1,2,18,90,100,101] and proteins [104]. Majumder et al.
demonstrated a method that avoids additives by simply drying an
aqueous droplet in an atmosphere containing ethanol vapor [105].
The preferential evaporation of the water at the contact line gener-
ates gradients in the surface tension, which drive strong recirculat-
ing Marangoni flow. This method was used for depositing catalyst
nanoparticles homogeneously for the purpose of growing single-
walled carbon nanotubes as well as manufacturing plasmonic films
of gold nanoparticles [105].

Marangoni flow based methods require either heating of the
liquid or addition of surfactants. Thus, it may not be suitable for
applications in which heating or chemical alteration of the sam-
ple is undesirable. On the other hand, chemical additive induced
Marangoni flow offers an easy solution to overcome the CRE. It does
not require any physical interference during the evaporation and is
independent of the system parameters. This method is thus suitable
in most of the printing applications. However, sample preparation
processes for biochemical analyses may not prefer such chemical
addition based methods. In Marangoni flow based methods, dynamic
control of the suppression process, for example, as in the case of EW,
EOF or acoustics, is not possible.

2.6. Interactions at solid-liquid and liquid-gas interfaces

Various investigations have shown that tuning the particle-
particle interactions [106] and particle-interface interactions
[107,108] can lead to the suppression of CRE. The particle-particle

Fig. 5. Marangoni flow and CRE. (a) Experimental observations (squares) and numerical calculations (triangles) of the circulation reversal in evaporating droplets. From top to
bottom, the squares represent evaporation of chloroform, isopropanol, ethanol and methanol on polydimethylsiloxane surface. The open symbols represent that the observed
direction of circulation is consistent with temperature decreasing with distance from the contact line and the closed symbols represent the reverse circulation. Adapted with
permission from: [35] Copyright ©2007, American Physical Society. (b) Particle deposition can be controlled by heating the surface of a colloidal droplet using a laser beam. The
laser beam induced flow (yellow arrows) is in the opposite direction to the capillary flow (black arrows). The red dashed line indicates the droplet profile towards the end of the
evaporation. (c) The shape of the stain depended on the ratio of exposure time (toff) and the evaporation time (tfL). (d) Optical images of residues (0.5 lm PS particles) depending
upon the ratio toff/tfL. Adapted with permission from: [94] Copyright ©2016, Royal Society of Chemistry.
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interactions can prevent their transport to the contact line as the
particle aggregates settle down on to the substrate surface. The
aggregation can be achieved for example, by increasing the salt
concentration of the liquid or tuning the pH of the liquid to reduce
the inter-particle electrostatic repulsion [109]. When aggregation
is present, the shape of the residue depends upon the evaporation
rate [110,111]. Dugyala et al. showed that when the evaporation rate
was lowered uniform disc-like deposits were formed [111]. Other
examples for particle-particle interaction preventing CRE are the
formation of transparent films of TiO2 nanoparticles [112], uniform
films by silver nano-ellipsoids [113] and uniform films when casting
a colloidal suspension of graphene oxide and titania on glass sur-
face [114]. Such uniform hybrid films can have applications in the
deposition of high-quality membranes from liquid phases [114].

The interactions of particles at the solid-liquid (SL) interface, for
example by DLVO (Derjaguin Landau Verwey Overbeek) interactions
(i.e. the sum of electrostatic and van der Waals forces), can mitigate
the transport of particles to the contact line and produce homoge-
neous residues [36,109]. The surface charge of the particle and the
substrate can be controlled by changing the pH of the liquid [36]
or adding surfactants into the liquid [115]. The surfactants adsorb
on the surface of the particles and substrate. Therefore, the charge
of the surfactant molecules can be utilized to alter the particles
and the substrate interactions. [115]. Bhardwaj et al. showed that
competence of three convective mechanisms i.e. the capillary flow,
particle migration to the solid surface by DLVO attractive forces and
the Marangoni flow determines the morphology of the residue [36]
(Fig. 6a). Using ellipsoidal particles of different aspect ratios Dugyala
et al. showed that CRE was stronger when the strength of particle-
particle repulsion was higher than the particle-substrate attraction.
However, CRE was suppressed when both particle-substrate and
particle-particle interactions were attractive [109] (Fig. 6b).

When particles adsorb to the liquid-gas (LG) interface they
deform the meniscus generating particle-particle attractive forces of
capillary nature [116,117] (Fig. 6c, d). This interaction is strong and
long-range particularly between ellipsoidal particles, which eventu-
ally generates homogeneous residues (Fig. 6e) [118]. This method
works even with mixtures of spherical and ellipsoidal particles pro-
vided that the sphere diameter is larger than the minor axis of the
ellipsoid. Even a small amount of ellipsoidal particles, i.e. about 130
times lesser volume fraction compared to the spherical ones, could
suppress CRE [118].

The trapping of particles at the LG interface depends on the curva-
ture of the interface [119] and wetting of the particle surface. It is not
possible to trap a particle when its surface is very hydrophilic. This
issue can be overcome by introducing surfactants in the liquid. In
this case, the interactions depends on the charge of both the particles
and the surfactant molecules [120,121]. When oppositely charged
particle-surfactant mixtures were used, the adsorption of the surfac-
tants onto the particle surface enhanced the affinity of those particles
to the LG interface. This affinity was stronger at intermediate concen-
trations of the surfactant as the particles became more hydrophobic
(Fig. 6f, g). The energy required to bring a particle from the inter-
face to the water phase is given by Eiw = p

4 a2c(1 − cos h)2, where
a is the diameter of the particle. As a result, an increase in the par-
ticle hydrophobicity i.e. an increase in h should cost more energy
to bring the particles back into the water. Therefore, increasing the
hydrophobicity tends the particles to remain trapped at the interface.
In the converse case, when like-charged particle-surfactant mixtures
were used, particles did not adsorb to the LG interface and CRE was
observed [121].

The particle affinity to the LG interface can be controlled
by modulating the surfactant-particle interactions optically [125].
Photosensitive cationic surfactant AzoTAB changes between trans
(less hydrophilic) and cis (more hydrophilic) states when irradi-
ated with blue light. The trans-molecules easily adsorbed on to the

anionic polystyrene nanoparticles. This allowed tuning the particle
interaction with LG interface optically, achieving controllability on
the shape of the dried patterns [125].

Evaporation of aqueous suspensions of poly(N-
isopropylacrylamide)(pNIPAm) microgel (hydrogel) particles
produces uniform deposition [122,123]. Microgel particles are
spherical polymeric networks swollen when dispersed in a solvent.
pNIPAm is thermally sensitive, which shows a volume phase transi-
tion around 31 ◦C in aqueous media. The pNIPAm microgel particles
adsorb at the LG interface during the evaporation [124] prevent-
ing their non-uniform transport to the contact line during the
evaporation [122,123].

The particles suspended in the liquid can be captured at the
LG interface by allowing it to descent rapidly by fast evapora-
tion [126,127]. The average descending rate of the interface is h/tf,
where h is the initial droplet height and tf is the evaporation time.
The particles diffusing vertically upwards are captured when the
descending rate of the interface is faster than the average diffusion
rate, 2(Dt/p)1/2 (D: the diffusion coefficient), of the particle. Once
the particles are trapped at the LG interface, the resulting deposit
becomes homogeneous (Fig. 7).

The methods utilizing the interfacial interactions are easy to be
deployed as they do not require any external devices to generate
forces (such as hydrodynamic, electric and acoustic) that interfere
with the capillary flow during the evaporation. This feature makes
the technique widely applicable on a range of substrates and in
applications like inkjet printing. Tuning the liquid properties (say,
pH) or addition of surfactants forms uniform deposition of colloids
in the droplet. Particularly, the method using ellipsoidal particles
does not require any such tuning of the chemical environment of
the liquid and thus it is suitable when chemical additives are not
desired. Even a small amount of ellipsoidal particles can change the
deposition pattern of a droplet containing majority of spherical par-
ticles. The residue formation with particle-particle interaction can be
further investigated with mixture of particles having different prop-
erties (size and surface species). It may generate new patterns as the
mutual interactions between the particles vary.

2.7. Transition of liquid property

Modifying the liquid properties is a common strategy adapted for
avoiding CRE in inkjet printing [8,9]. Uniform deposits can obtained
by altering the composition of the colloidal ink solution to avail of
the Marangoni effects and to induce fast drying [6,7,130-133].

One may assume that simply increasing the viscosity of the
liquid can suppress the capillary flow. It is possible only if the vis-
cous effects dominate the capillary effects. The relative importance
of both these properties can be compared by the capillary number,
Ca = gvrad/c. Putting typical numbers for the capillary flow velocity
vrad =10 lm/s, for water we obtain Ca ∼ 10-7. It implies that for vis-
cous effects to play a major role, i.e. for Ca ≥ 1, there should be at
least 107 fold increase in the viscosity [128]. Therefore, in practice
increasing the viscosity is not a recipe for suppressing the capillary
flow.

Since very high viscosity is a bottleneck in printing applications,
viscous liquids with tailored rheological properties are needed. For
example, liquids that can undergo sol-gel transition i.e. change from
a easily flowing low viscosity solution into a complex fluid that flows
above a given shear. Droplets of colloidal suspensions containing
laponite, a synthetic clay that swells to form a gel when dispersed in
water, does not produce CRE due to the sol-gel transition of laponite
during evaporation [128,129]. As the droplet evaporates, the laponite
concentration increases forming a gel. It resists the capillary stresses
and the resulting flow of the particles. The advantage of sol-gel tran-
sition is more than simply increasing the viscosity with additives
as the resulting gel is a yield stress fluid. For example, laponite

Kinam Park
Highlight
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Fig. 6. Interfacial effects and CRE. (a) Phase diagram for evaporative self-assembly of nanoparticles. The final pattern shape is determined by the relative strength of three
characteristic velocities: capillary flow (Vrad), velocity due to attractive DLVO forces (VDLV O+ ), and Marangoni flow (VMa). Adapted with permission from: [36] Copyright ©2010,
American Chemical Society. (b) Optical images of dried patterns obtained with hematite ellipsoidal particles on a glass slide at different pH values. The zeta potentials of the
particles and the glass surface are also shown. Intermediate pH values generated uniform deposits. Adapted with permission from: [109] Copyright ©2015, American Chemical
Society. (c) The sketch of overall potential in the interaction of two particles at the LG interface. At small distances the capillary attraction, which scales as L-4, is strong enough to
overcome the electrostatic dipole-dipole repulsion, which scales as L-3. rc is the minimum distance between the particles. Recreated from (recreated from [116]).(d) Deformation
profiles of the LG interface around an ellipsoidal particle with aspect ratio 5.0. Adapted with permission from: [117] Copyright ©2014, American Chemical Society. (e) Uniform
deposition occurred when colloidal droplet containing ellipsoidal particles dried on solid surface. a is the major-minor axis aspect ratio of the particles. Adapted with permission
from: [118] Copyright ©2011, Nature. Evaporation of a droplet containing anionic PS particles (0.5 lm diameter) with (f) and without (g) surfactant (DTAB). For the droplet
containing DTAB, particles accumulated at the interface eventually leading to a fairly homogeneous pattern. For the surfactant-free droplet, particle adsorption at the LG interface
was much weaker, thus showing CRE. Adapted with permission from: [121] Copyright ©2015, American Chemical Society.

suspensions are highly viscous, yet above a given shear rate they flow
like a low viscosity liquid.

Eales et al. studied the evaporation of polymer droplets numer-
ically to understand the ways to control the residue forma-
tion [50,51]. They found that polymers with larger molecular weight
mitigated CRE. Similarly, a reduction in the Péclet number, which
implies a diffusion dominated transport, also mitigated CRE. This is
because the diffusion of the polymer counteracts its transport by
the weak capillary flow. Experimental studies also show that the
dried pattern depends on the molecular size. With high molecular

weight the contact line moves slowly leaving a continuous layer of
polymer [134].

Droplets containing pNIPAm-modified colloids formed homo-
geneous residues due to faster monomer polymerization during
evaporation [135]. Van den Berg et al. achieved thermally induced
gelation of TiO2 ink containing special polymers [136]. Here, the col-
loidal stability was initially achieved by the adsorption of polymers
(poly(vinyl methyl ether) block-poly(vinyloxy-4-butyric acid)) on
the surfaces of the particles inducing steric repulsion. When the tem-
perature was raised above 33 ◦C, poly(vinyl methyl ether) became
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Fig. 7. Thermally induced surface capturing. When temperature is raised the interface descends more quickly than particle diffusion, capturing the particles at the interface. It
produces uniform deposition (see ref. [127]).

insoluble and the adsorbed layer of polymers collapsed on the sur-
face of the particle destroying the colloidal stability. The resulting
aggregation and increase in viscosity eliminated CRE.

The substrate temperature can also be a control parameter
in gelation as demonstrated by Soltman et al. [137]. They inkjet
printed uniform lines without CRE by optimizing the substrate tem-
perature, deposition frequency and the droplet spacing using the
polymer, poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate)
on glass surfaces coated with poly(4-vinylphenol) dielectric. Higher
temperatures (above about 30 ◦C) of the substrate produced CRE but
lower temperatures suppressed it [137].

Evaporation of water droplets containing lysozyme was studied
using AFM and optical microscopy [138]. Lysozyme is a globular pro-
tein, for example, present in human tears and saliva. As the droplet
diameter varied from 1 to 50 l m, above a critical diameter the
shape of the residue changed from cap to ring. This critical diameter
of the droplet systematically increased with lysozyme concentra-
tion. Below the critical diameter the Péclet numbers (Pe) were small.
When Pe < 1, the lysozyme particles were transported mainly by
diffusion and the deposit patterns were strongly depended on the
concentration. It means that before considerable amount of par-
ticles reached at the droplet-edge gelation occurred there due to
evaporation.

2.8. Humidity cycling

It was shown that modifying the local atmospheric conditions,
for example, switching between evaporation and condensation pro-
cesses suppresses CRE of polymer droplets [141]. When the residue
was exposed to the solvent vapor for an optimum duration and dried
again, its morphology changed from ring to disc. The numerical stud-
ies by Eales show that CRE is eliminated due to the refluidization of
gelled regions during the condensation [142]. Refluidization brings
back the spherical cap shape to minimize the surface energy. The
process of regaining the spherical cap shape induces an inward flow

towards the center of the droplet. The restoring time of the spherical
cap shape during the condensation phase sets an optimum duration
of the condensation and evaporation phases. The advantage of the
humidity cycling method is that it does not require tuning material
properties or introduction of any external fields. This method is suit-
able for solutions that can dry and refluidize for example, polymer
solutions.

2.9. Porous substrates

When droplet evaporation occurs on porous substrates the
residue morphology depends upon factors such as porosity and the
depth of the pores [139]. When the solvent is fully imbibed into the
pores the competition between the rate of particle motion to the
contact line and the rate of solvent infiltration determines the final
deposition pattern. The CRE is suppressed when the infiltration into
the pores is faster. If the infiltration of the solvent is not complete,
then the competition between particle motion and evaporation rate
of the remaining liquid governs the final deposition patterns. Similar
conditions govern the evaporation and pattern formation on paper
substrates [140].

2.10. Other methods

Other methods found in the literature are depositing multi
droplets and using inclined surfaces. Depositing multiple droplets
subsequently on an initially formed non-uniform residue can even-
tually form a deposit without thick edges [143]. The principle of this
technique lies in the competition between the time scales of parti-
cle diffusion and solvent evaporation from the printed deposit. The
residue formation on inclined surfaces [144] is also interesting in
view of the suppression of CRE. Simply tilting the substrate at an
angle of 10◦ and raising its temperature (50 ◦C) formed a uniform
film of silver nanoparticles and nanowires, which was used for SERS
studies [16,145].
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2.11. Advantages and limitations

Fig. 8 provides a compact overview of the methods utilized to
suppress CRE. The rows are arranged to identify the methods in
columns based on their mode of action, advantages and limitations.
The first three rows point out which one of the three physical
approaches the methods utilize, namely de-pinning, disturbing the
capillary flow and trapping the solute. The advantages and limita-
tions are categorized from an application point of view.

As shown in Fig. 8, every method has its own successful working
range and limitations. A common scenario where most of the meth-
ods are pushed to the limits is the presence of nanoparticles in the
liquid. The nanoparticles quickly move into the microscopic regions
of the liquid wedge at the contact line inducing strong pinning. How-
ever, such pinning is minimized on highly hydrophobic surfaces and
when externally induced flow (e.g. by Marangoni effect, ACEW and
SAW) is much stronger than the capillary flow. The hydrophobic
surfaces enhance adsorption of hydrophobic molecules (say, in bio-
logical samples). The hydrophilic surfaces minimize such adsorption
but they in general increase the CRE because of the strong capillary
flows due to the small contact angle. Therefore, methods having the
combination of the use of moderately hydrophilic surfaces and exter-
nally induced strong flow will be an optimum solution to prevent
CRE.

When external forcing is applied during evaporation as in ACEW
and SAW, the accompanying devices make the method unsuitable

for integration with conventional systems (say, printers). This lim-
itation may not exist in the case of solute or solvent modification.
The shape of the suppressed residue is also important depending
upon the application. In the case of printing disc-like uniformly dis-
tributed residue is preferred. Such deposition is also useful in the
sample preparation for SERS measurements. In the sample prepa-
ration for MALDI concentrated spot-like residues are preferred.
Spot-like residues are formed when the contact line is continuously
de-pinning during the evaporation. However, a disc-like, large and
uniform residue requires the contact line to be pinned but the solutes
are not transported to there. This scenario can be achieved in meth-
ods that trap the solute, namely, the ones using acoustic trapping at
high frequencies and interactions at LG and SL interfaces. Dynamic
controllability in the suppression methods helps to control the shape
of the residue. It also helps in patterning particles with various
designs broadening the applications.

3. Utilization of CRE

Evaporation of droplets can be exploited as a method to con-
centrate its solutes in it. Evaporation of the solvent can increase
the analyte concentration making the reactions more proba-
ble [146,147]. When strong CRE exists, the solute is deposited at the
contact line increasing their concentration there. This deposition of
solutes and particles are exploited as a pre-concentration method

Fig. 8. Comparison of different methods. The working principle, advantages and limitations are illustrated.
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or forming patterns of particles. In this section, we discuss such
utilization of CRE.

3.1. Biochemical applications

Concentrating solutes at the rim of the droplet by CRE is called the
self-ordered ring (SOR) method (Fig. 9a). It acts as a pre-concentration
procedure before various analyses. Often a hydrophobic surface is

used as the substrate in SOR method. Drying process on hydrophobic
surfaces forms smaller rings with higher solute density as the contact
line is pinned only in the later stages of the evaporation. Liu et
al. demonstrated that the SOR method enhanced the fluorescence
detection of orally administrated berberine in human urine [148].
Similarly, fluorescent detection of trace levels of tetracycline [149],
quinidine sulfate in serum samples [150] and fluorescein [151] was
demonstrated based on the SOR method.

Fig. 9. The CRE is used as a beneficial effect in various applications. (a) The enhancement of the analyte concentration at the ring along with the Ag-nanoparticles improves
detection by SERS. Adapted with permission from: [17] Copyright ©2014, Royal Society of Chemistry. (b) An immunoassay is demonstrated with a solution of Au coated polystyrene
nanoparticles and Plasmodium falciparum biomarker. (ii–iii) When the droplet of this solution dries on a glass slide, the biomarker proteins are aggregated with the particles
at the contact line, mimicking an enzyme-linked immunosorbent assay. Adapted with permission from: [21] Copyright ©2014, American Chemical Society. (c) The CRE detects
mutated protein haemoglobin (h-HbS) from its native form (h-HbA) when blood is dried with dispersed polystyrene particles of different charge. (Left panel): the adsorption of
proteins alter the charge of the particles influencing the deposit morphology (paths 1 and 4). The exposure to charged (path 2) and hydrophobic (path 3) moieties inverts the
effect. (Right panel): there is a notable difference in the patterns formed with healthy and pathogenic form of haemoglobin with (right) and without (left) the presence of anionic
polystyrene particles. Adapted with permission from: [164] Copyright ©2016, American Chemical Society. (d) (Left): The CRE is used for chromatography for size-dependent
particle separation near the contact line. (Right): Optical fluorescence image showing the separation of 40 nm (green), 1 lm (red), and 2 lm (blue) particles after evaporation.
Adapted with permission from: [22] Copyright ©2011, American Chemical Society.
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Wen et al. developed an aptamer biosensor based on the
enhanced solute concentration at the ring [20]. They detected a-
thrombin in human serum and four-fold-diluted whole blood. The
SOR method gave a lower limit sensitivity of detection of 2 ng/mL
(54 pM) in serum, and 4 ng/mL (105 pM) in the blood. Similarly, a
malaria diagnostic platform was also reported based on the SOR
method to detect Plasmodium falciparum histidine-rich protein-
II, which is a biomarker indicative of the P. falciparum parasite
strain [21,152] (Fig. 9b). In this sensor, gold-plated and surface
chemical-modified polystyrene microspheres bind with the protein
and form a sandwiched assay with the glass substrate at the contact
line. The ring formation allowed sensitive detection with the naked
eye at protein concentrations as low as 10 pM [21].

When SOR method is used in the Raman analysis (Fig. 9a) it is
known as the ‘droplet coating deposition Raman’, which has shown
its advantages, for example, in proteomics [153–156]. In particu-
lar, in SERS the nanoparticle aggregates at the ring can serve as
hot spots as the chemical constituents to be detected get packed
there along with the particles. The CRE assisted SERS measure-
ments [17,157] particularly, the detection of polycyclic aromatic
hydrocarbons in river water [158] and glycated haemoglobin [159],
which is a promising target for monitoring the long term history of
diabetes, are successful examples.

The drying patterns of biological fluids can have applications in
forensics and diagnostics. For example, blood droplets form charac-
teristic patterns upon drying [19], which are interesting in foren-
sics [160]. For example, shape of the dried blood droplets can reveal
the angle and velocity of the ‘deposition’ on the wall. Similarly, the
dried patterns of blood can also reveal information regarding the dis-
ease status. The diagnostic value of dried blood samples for early
detection of cancer was identified by Bolen in 1942 itself [161,162].
Later, various other studies were performed to investigate the diag-
nostic potential of the pattern on dried blood droplets as reviewed
by Chen et al. [163].

Recently, Devineau et al. demonstrated that the patterns of the
blood mixed with polystyrene particles differ when there is a point
mutation in the protein haemoglobin, i.e. variation from healthy
form (h-HbA) to the mutant pathogenic form (h-HbS) (Fig. 9c) [164].
In the droplet, h-HbS adsorbed on to the anionic particles result-
ing their migration to the liquid/air interface by the exposure of the
hydrophobic regions of the adsorbed protein. It resulted in the sup-
pression of CRE whereas the particle-h-HbA combination formed a
clear CRE. Similarly, Li et al. used the shape of the residue as a readout
for detecting DNA hybridization [165]. They functionalized the sur-
face of microparticles with single-stranded oligonucleotide probes.
When the complementary target DNA was introduced, hybridization
occurred, connecting multiple particles. Such aggregation of the par-
ticles distorted the meniscus surrounding them inducing long-range
capillary attraction and eventually influenced the residue shape. This
method demonstrated high specificity and could identify even a
single mismatch of a nucleotide.

Trantum et al. demonstrated concept of a biosensor based on
the Marangoni flow in an evaporating drop [166]. They detected the
presence of M13 bacteriophage as a model target. Marangoni flow
concentrated the aggregates of dispersed 1 l m-diameter particles,
which are surface functionalized with anti-M13 monoclonal anti-
bodies, formed in the presence of the target. In the absence of the
bacteriophage, the aggregation did not occur and the dispersed par-
ticles did not get concentrated at the center of the droplet. Measuring
the size of the final spot using standard microscopy they achieved
a limit-of-detection of approximately 100 fM. In this sensor, the
choice of suitable substrate material is important as the direction of
Marangoni flow depends on the relative thermal conductivity of the
substrate and the liquid [35].

Separation of nanoparticles, micro-organisms and mammalian
cells in a liquid droplet was demonstrated using the CRE [22]. When

the particles or cells flow into the liquid wedge they get spatially
distributed depending upon their size. This method has a separa-
tion resolution on the order of 100 nm and a dynamic range from 10
nm to a few tens of micrometers (Fig. 9d). A similar technique was
demonstrated making use of the thermally driven strong Marangoni
flow generated by heating the substrate [167]. The strong Marangoni
flow pushes the particles well into the liquid wedge increasing the
resolution of separation.

Yadav et al. used CRE for the encapsulation of gold nanoparticles
in poly-3-hydroxybutyrate (PHB) matrix using inkjet printing [168].
Here, an aqueous solution of the gold nanoparticles was deposited on
a PHB surface and allowed to dry. Another droplet of PHB was added
on to the dried spot and the miscible nature of the PHB substrate and
PHB droplet encapsulated the nanoparticles in PHB.

The pre-concentration of samples using SOR method is very cost
effective and require no special equipment. It is highly useful in
SERS and MALDI based sensors where dried sample are used for the
analysis. Although the SOR method increases the sensitivity, a more
sensitive detection can be achieved if one could suppress CRE to
concentrate all the solute into a single spot. This idea was demon-
strated in the case of MALDI analysis [13–15]. One major issue in
the SOR method is the non-specific adsorption of the active compo-
nents on the substrate surface. Adsorption will prevent the analytes
from reaching the contact line. The adsorption is much pronounced
on hydrophobic substrates. Suppression methods based on acoustics,
Marangoni effect and interfacial effects that are independent of the
wettability of the substrate are suitable for concentrating biological
samples.

One another issue is the fact that nanoparticles or molecules can
get trapped with the salt crystals in the bulk of the droplet prevent-
ing their concentration. It occurs especially in the drying of biological
fluids. Trantum et al. overcame this issue by adding glycerol in the
droplet, which prevented complete drying, thus avoided the salt
crystallization [166]. Concentrating the solute much before the com-
pletion of the drying can prevent the interference of the salt crystals.
A suitable method in this context is acoustic streaming [86]. Further
investigations are required to optimize CRE based biosensing and
chromatography especially in the presence of biological samples.

Diagnostics based on the pattern formation can detect the pres-
ence of bio-markers in biological fluids. However, this detection is
qualitative to identify the presence or absence of a particular species.
Further investigations can be performed to relate the patterns to
quantitative amount of the species. Another possible area of study is
the pattern of cracks formed on the residue of biological samples, for
example, blood, to predict a disease state and its progression.

3.2. Industrial applications

Evaporative self-assembly by CRE can form patterns using micro-
and nanoparticles as the building blocks. For example, ordered 3D
structures of particles can be produced by evaporation for photonic
applications [169,170]. These applications require good control over
the self-assembly process. In this regard, Choi et al. demonstrated
a finely controlled way of assembling 3D structures of silica, metal
oxide (TiO2, ZnO) and metallic nanoparticles [171] (Fig. 10a, b). Here,
CRE drives particles into the photo-patterned rectangular wells and
trenches on the substrate. Various patterns are formed by adjust-
ing the concentration and size of the particles in the solution. After
the particle deposition in the wells or trenches the photoresist is
removed to obtain the defined patterns.

The CRE was used to fabricate rings of synthesized mesoporous
particles. The porous property of these particles was used for absorb-
ing fluorescent dye for sensing applications [172]. Combination of
CRE with dielectrophoresis was demonstrated to produce concen-
tric patterns of polystyrene and TiO2 nanoparticles [173]. Here,
concentric electrodes patterned on the substrate were used to apply
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Fig. 10. CRE based patterning of particles. (a) Patterns of silica particles 1 lm. (b) Patterns with particles of two different diameters (1 and 3 lm). Adapted with permission
from: [171] Copyright ©2010, American Chemical Society. (c) Optical image of a grid of conducting twin lines of silver nanoparticles. Adapted with permission from: [177] Copy-
right ©2013, American Physical Society. (d) An array of interconnected rings of silver nanoparticles acts as transparent conductive coating. Adapted with permission from: [179]
Copyright ©2009, American Chemical Society. (e) Optical image, surface profile, and schematic cross-section of a cantilever strengthened by printed silver nanoparticles. Adapted
with permission from: [183] Copyright ©2014, American Physical Society.

AC signal (0.1–100 Hz and 5 V) during the evaporation of the droplet.
The spacing of the concentric rings and the patterned areas depended
on the frequencies of the applied AC signal and the direction of
the dielectrophoretic force. This force is negative and positive for
polystyrene (PS) and TiO2 particles, respectively.

The CRE was utilized in electronics applications, for example, to
define channels in the fabrication of metal oxide thin-film transis-
tors [174] and make high resolution patterns such as conductive
wires of nanoparticles [8,175-178] (Fig. 10c). Such simple inkjet
printing based methods can avoid complex lithographic steps and
produce lines as thin as 5–10 l m. Transparent conductive coatings
were also fabricated based CRE [179]. These coatings consisted of
2D array of interconnected ring-like deposits of silver nanoparticles
(Fig. 10d). The individual rings had a diameter of about 150 l m,
which were obtained by drying inkjet printed droplets [179]. Par-
allel twin conducting lines were fabricated by drying a ribbon-like
droplet formed by a series of inkjet printed droplets containing silver
nanoparticles [177,178] and multi-walled carbon nanotubes [180].

Ma et al. produced twin lines of particles by evaporation com-
bined with a technique called electroless plating to adhere the parti-
cle reaching at the contact line to the substrate. The electroless plat-
ing uses a solution of metal salt, reducing agent, a complexing agent,
and additives. The metal nucleates on the catalytically active surface
producing strong bond between the surface and the metal particles.
They inkjet printed the aqueous solution of poly(dopamine) silver
nanoparticles on glass substrate to form twin lines followed by its
immersion into silver nitrate solution for electroless plating [178].

Using CRE, Khapli et al. demonstrated fabrication of porous
films [181] and scaffolds [182] from a wide variety of ceramic mate-
rials such as CaCO3, ZnO, CuO, Co3O4, Co-doped ZnO and Ag2O.

This method consisted of evaporation of CO2-enriched water micro-
droplets onto substrates heated to 120 ◦C. The CaCO3 scaffolds have
use in enhancing bone healing around titanium implants.

In an another interesting experiment, CRE was used for fabri-
cating U-bar shaped micro-cantilevers [183] (Fig. 10e). It is difficult
to fabricate curved surfaces using conventional microfabrication
techniques. Due to CRE the inkjet printed silver nanoparticles formed
thicker edges on the bar increasing its effective stiffness. Tuning the
drying conditions the height of the edges can be controlled.

Self-assembly of particles by CRE is a cheap and simple method to
fabricate photonic crystals and conducting wires. The self-assembly
process depends strongly on the evaporation rate resulting in square,
hexagonal and random ordering of the particles [32]. Slow evapora-
tion deposits particles at a slow rate allowing them enough time to
form ordered structures. However, fast evaporation rushes the par-
ticles to the contact line depositing them in an orderless fashion.
Methods using surface templates, for example, as shown by Choi et
al. can produce patterns having well defined edges.

When the particles are of higher density compared to the liq-
uid, they may sink directly on to the surface of the substrate before
reaching at the contact line. This scenario can result in a spread of
the particles on the surface rather than thin lines. However, this dif-
ficulty can be overcome by tuning the evaporation rate and using
small particles (say, nanoparticles). In general, controlling the evap-
oration rate, liquid properties (such as density and composition)
and substrate wettability help formation of thin wire-like patterns
of particles. When the deposition process is well optimized the
particles tightly assemble at the contact line forming a conduc-
tive wire even without additional processing for example thermal
sintering. However, thermal sintering can improve the quality by
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connecting the particles firmly avoiding cracks and thus making
the wires robust [175,177]. Thermal sintering is not compatible
when the wires need to be produced on polymer substrates. The
method developed by Zhang et al. could pattern wires on flexible
poly(ethyleneterephthalate) substrates with a sintering process at
room temperature [176]. CRE combined with electroless plating is a
suitable method to pattern strong wires on flexible substrates [178],
where no thermal treatments are required.

A control over the evaporative deposition process is necessary
to design new patterns and fine tune them. For example, controlled
evaporation of polymer solutions has produced well defined con-
centric gradient rings [184–187]. Here, the control was achieved
by using microparticles as templates or capillary bridges in con-
fined geometries composed of either two cylindrical mica surfaces
placed perpendicular to one another [185] or a sphere placed on flat
surface [186,187].

A dynamic control over the deposition process can give more
options to tune the patterns. Dynamic control of the deposition
process can be achieved by using the same methods used for the sup-
pression of CRE, such as electrowetting, electroosmotic flow, laser
irradiation and acoustics. Turning the external forcing on and off
during the evaporation, a positive and negative feedback in the depo-
sition process can be induced. Acoustics based method offers an
additional capability for preferential control over the particles being
deposited based on their size. Such a dynamic control of the CRE is
not possible in methods involving modification of the solvent or the
solute.

4. Summary

This review summarizes various strategies related to suppres-
sion and utilization of CRE. We have highlighted scientific and
technological developments initiated by the rich physical phenom-
ena involved in CRE. The curiosity driven scientific studies aimed at
understanding of CRE and the application-motivated studies focus-
ing on how to avoid CRE have given rise to novel manufacturing
approaches. We believe emerging challenges highlighted in Section
“Advantages and Limitation”, particularly with strongly pinning
nanomaterials, offer promising research directions.

On the other hand, CRE inspired approaches can be utilized to
improve biochemical analyses and prepare new materials through
convection induced assembly. In biochemical analyses, CRE enables
concentration of analytes by making use of contact line pinning and
capillary flows. Similarly, ordered colloidal structures can be con-
structed through convection induced self-assembly at the contact
line. We have described existing challenges and suggested possible
directions for future research at the end of each sections.
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